Overview
I’m a Ph.D. candidate in Data Science at the University of Virginia, advised by Sheng Li (RISE Lab). My research interests are LLM agents, multi‑agent systems, reasoning, and efficiency.
Previously, I earned an M.S. in Biostatistics at Harvard, working with William La Cava on fairness-aware ML in healthcare. Before that, I completed my B.S. in Statistics (Summa Cum Laude) at UIUC.
Research interests
LLM Agents
Multi‑Agent Systems
Reasoning
Efficiency
Availability: Seeking a Summer 2026 research internship in LLM agents, multi‑agent systems, reasoning, and efficiency.
Education
University of Virginia — Ph.D. in Data Science
08/2023 – 05/2027 (expected) · Advisor: Sheng Li
Focus: LLM reasoning & agents; fairness & uncertainty; social intelligence
Harvard University — M.S. in Biostatistics (Data Science)
08/2021 – 05/2023 · GPA: 3.89
UIUC — B.S. in Statistics (Summa Cum Laude)
09/2017 – 12/2020 · Minor: CS & Mathematics · GPA: 3.94
Selected Publications
-
COMPASS: Enhancing Agent Long-Horizon Reasoning with Evolving Context. Under review, 2025. PaperG. Wan, M. Ling, X. Ren, R. Han, S. Li, Z. Zhang
-
BEACON: Bayesian Optimal Stopping for Efficient LLM Sampling. Under review, 2025. PaperG. Wan, Z.S. Xu, S. Zorc, M. Baucells, M. Hu, H. Wang, S. Li
-
Reasoning-Aware Self-Consistency: Leveraging Reasoning Paths for Efficient LLM Sampling. NAACL 2025. PaperG. Wan, Y. Wu, J. Chen, S. Li
-
Derailer-Rerailer: Adaptive Verification for Efficient and Reliable Language Model Reasoning. ACL Findings 2025. PaperG. Wan, Y. Wu, H. Wang, S. Zhao, J. Chen, S. Li
-
Disparities in LLM Reasoning Accuracy and Explanations: A Case Study on African American English. ARR (under review). PaperR. Zhou*, G. Wan*, S. Gabriel, S. Li, A. Gates, M. Sap, T. Hartvigsen (*equal)
-
Bridging Causal Discovery and Large Language Models: A Survey. IJCAI 2025. PaperG. Wan, Y. Lu, Y. Wu, M. Hu, S. Li
-
ProAI: Proactive Multi-Agent Conversational AI for Psychiatric Diagnosis. ARR (under review). PaperY. Wu*, G. Wan*, J. Li, S. Zhao, L. Ma, T. Ye, I. Pop, Y. Zhang, J. Chen
-
Deep Learning on Intrapartum FHR to Predict Acidemia at Birth. AJOG, 2024. PaperJ.A. McCoy, L.D. Levine, G. Wan, et al.
-
Two-step LightGBM for Human West Nile Virus Risk in Chicago. PLOS ONE 19(1): e0296283, 2024. PaperG. Wan, J. Allen, W. Ge, et al.
-
Fair Admission Risk Prediction with Proportional Multicalibration. CHIL, 2023. PaperW.G. La Cava, E. Lett, G. Wan
Full list on Google Scholar.
Experience
Student Researcher — Google
Mountain View, CA · 05/2025–Present
Data Scientist Intern — Chewy
Boston, MA · 06/2022–08/2022
ML Research Intern — Boston Children’s Hospital (CHIP)
Boston, MA · 01/2022–04/2023
ML Research Intern — NCSA (Student Pushing Innovation)
Champaign, IL · 06/2019–12/2020
About Myself
Outside research, I enjoy exploration and the outdoors (visited 24 U.S. National Parks), photography (nature and astrophotography), and gaming (Teamfight Tactics).
Academic Service
Teaching Assistant
- UVA: CS 5012 (Summer ’24), DS 6310 (Spring ’24), DS 6030 (Fall ’23)
- Harvard: CS 109B (Spring ’23)
Reviewer
- NeurIPS 2024; ICML 2025; ICLR 2025; AISTATS 2025
- IEEE Computational Intelligence Magazine