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Abstract001

Sampling multiple responses is a common way002
to improve LLM output quality, but it comes003
at the cost of additional computation. The key004
challenge is deciding when to stop generating005
new samples to balance accuracy gains against006
efficiency. To address this, we introduce BEA-007
CON (Bayesian Efficient Adaptive Criterion008
for Optimal N-stopping), a principled adaptive009
sampling framework grounded in Sequential010
Search with Bayesian Learning. BEACON se-011
quentially generates responses from the policy012
LLM, updates posterior belief over reward dis-013
tributions in real time without further training,014
and determines when to stop by weighing ex-015
pected gains against computational cost. Sam-016
pling terminates once the marginal utility of fur-017
ther exploration no longer justifies the expense.018
We establish both theoretical optimality guar-019
antees and practical tractability, and show em-020
pirically that BEACON reduces average sam-021
pling by up to 80% while maintaining response022
quality. We further demonstrate BEACON’s023
utility for cost-efficient preference data genera-024
tion and outline practical extensions, offering025
actionable insights for future researchers.026

1 Introduction027

Large Language Models (LLMs) have shown028

human-like abilities across diverse tasks such as029

mathematics, coding, and creative writing (Ke030

et al., 2025; Hendrycks et al., 2021). Yet, they031

often produce inconsistent outputs, occasionally032

hallucinated on queries they could solve correctly033

across different runs (Manakul et al., 2023; Xu034

et al., 2025). To address this, sampling has been035

widely adopted: by generating multiple responses036

and selecting one based on specific criteria, it im-037

proves performance in tasks like complex reason-038

ing (Wang et al., 2022; Snell et al., 2025), safety039

alignment (Ichihara et al., 2025), and preference040

data generation (Yuan et al., 2024). However,041

blindly scaling computational resources is subop-042

timal and impractical, particularly in settings such 043

as streaming or real-time LLM applications (Xiao 044

et al., 2024), where efficiency is as critical as re- 045

sponse quality (Yehudai et al., 2025). This high- 046

lights the need for a deeper understanding of the 047

economy of inference—balancing computational 048

cost against performance gains. 049

Existing adaptive sampling methods are mainly 050

based on sample-consistency heuristics to estimate 051

task difficulty or confidence (Aggarwal et al., 2023; 052

Wang et al., 2022; Wan et al., 2025b; Taubenfeld 053

et al., 2025; Wan et al., 2025a). While training-free 054

and easy to implement, these approaches often fail 055

to generalize (Fu et al., 2024; Wang et al., 2025a) 056

because multiple incorrect responses can exhibit 057

consistency, and measuring consistency remains 058

challenging for open-ended tasks with multiple 059

valid answers. An alternative direction focuses 060

on making Best-of-N sampling adaptive by learn- 061

ing when to stop generating candidates based on 062

reward model feedback (Cobbe et al., 2021; Ope- 063

nAI, 2022; Zhang et al., 2024). While these adap- 064

tive BoN methods show effectiveness across di- 065

verse scenarios, they rely on data-centric, training- 066

heavy pipelines to learn auxiliary stopping models 067

(Damani et al., 2025), which limits adaptability 068

to new domains while potentially introducing bias 069

and reducing output diversity. Critically, both ap- 070

proaches rely on heuristics or learned approxima- 071

tions without theoretical guarantees of optimality, 072

making their stopping decisions inherently ad-hoc. 073

To bridge this theory-practice gap, we leverage 074

principles in Bayesian optimal stopping (Baucells 075

and Zorc, 2024) and reformulate LLM sampling 076

as a sequential search problem. This framework 077

ensures stopping decisions achieve Bayesian opti- 078

mality given currently observed data, eliminating 079

reliance on heuristic approximations (Rothschild, 080

1974). Rather than learning reward distributions of- 081

fline, we conceptualize them as latent processes for 082

online updating: each generated response reveals 083
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🎯 Best-of-N (Fixed Strategy) 🧠 BEACON (Cost Aware Strategy)

Scenario 1: Consistent Quality

🤖 Always sample N=8
times

Samples: 0.92 0.90 0.91 0.89 0.93 0.91 0.90 0.92

❌ Wasted 5+ samples
All similar quality!

🧠 Learning distribution
while sampling...

📊 Learned Distribution:

σ ≈ 0.01

Narrow peak
(high certainty)

Samples: 0.92 0.90 0.91 🛑 STOP
💡 Low variance (σ≈0.01)
→ Marginal benefit < Cost

→ Stop early!

✅ Saved 62% compute
Same quality result!

Scenario 2: High Variance Quality

🤖 Still sample N=8
times

Samples: -0.5 0.3 0.85 -0.2 0.4 0.1 0.6 -0.3

⚠️ Stopped at 0.85
Might have missed better solutions!

🧠 Learning distribution
while sampling...

📊 Learned Distribution:

σ ≈ 0.5

Fat tails
(high uncertainty)

Samples: -0.5 0.3 0.85 ↻ 0.95 0.2 ...
💡 High variance (σ≈0.5)

→ Potential benefit > Cost
→ Keep sampling!

✅ Found 0.95 (better than BoN's 0.85)
Adaptive strategy pays off!

Figure 1: Comparison of BEACON adaptive sampling versus Best-of-N fixed sampling. BEACON adaptively
determines sample size by learning the reward distribution and determine if additional sampling is worth the cost.
Intuitively, BEACON stops earlier for consistent samples and continues sampling to find better solutions for variable
reward samples, while Best-of-N always uses fixed samples (in this case, 8) regardless.

.

information about the underlying reward distribu-084

tion while incurring computational costs (Toth and085

Oberhauser, 2020). The fundamental challenge086

becomes determining the optimal stopping point087

where expected benefits from additional samples088

no longer justify associated costs, which can be089

addressed with Bayesian learning theory (Chris-090

tensen, 1986; Bikhchandani and Sharma, 1996).091

We therefore introduce the Bayesian Efficient092

Adaptive Criterion for Optimal N-stopping093

(BEACON), a novel adaptive sampling framework094

that makes optimal stopping decisions computa-095

tionally practical while enabling real-time deploy-096

ment without additional offline training require-097

ments. Our approach can be understood through098

two synergistic components: sequential search ad-099

dresses the adaptivity challenge, while Bayesian100

learning provides a principled framework for on-101

line reward distribution learning. Together, these102

components enable derivation of adaptive sampling103

policies without pre-training while guaranteeing104

theoretical optimality. BEACON sequentially105

collects responses, updates sufficient statistics of106

the posterior reward distribution, and employs an107

index-based sampling policy that compares a qual-108

ity index against a cost threshold. Intuitively, BEA-109

CON terminates when reward evaluations exhibit110

minimal variation, indicating stable characteriza-111

tion of the quality distribution, or when additional112

computation is unlikely to yield superior rewards.113

Figure 1 contrasts BEACON’s adaptive stopping114

with conventional Best-of-N sampling, illustrating115

how our Bayesian criterion adaptively allocates116

computation across variable-reward queries. Our117

empirical evaluations on reasoning and alignment 118

benchmarks demonstrate that BEACON substan- 119

tially reduces average inference costs compared to 120

fixed BoN while maintaining comparable perfor- 121

mance, with demonstrated utility for cost-effective 122

preference data generation, practical hyperparam- 123

eter selection guidance, and extensions to batch 124

sampling for enhanced efficiency. In sum, our main 125

contributions are: (1) We propose BEACON, an 126

adaptive sampling framework that reformulates 127

LLM sampling as a sequential Bayesian search 128

problem for theoretically optimal stopping with- 129

out training additional auxiliary models. (2) We 130

provide rigorous analysis of its theoretical guaran- 131

tees and computational complexity. (3) We conduct 132

comprehensive experiments across diverse bench- 133

marks, demonstrating its effectiveness against es- 134

tablished baselines and highlighting practical exten- 135

sions for post-training and real-world deployment. 136

2 Modeling LLM Sampling as Sequential 137

Search Problem 138

2.1 Methodology Overview 139

Reward Models as Quality Assessment Tools. 140

Reward Models (RMs) (Zhang et al., 2024; Zhong 141

et al., 2025) provide scalar assessments of response 142

quality that serve as evaluation signals for adap- 143

tive sampling. Trained on pairwise preference data 144

D = {(xi, yw,i, yl,i)}, these models encode both 145

preference direction and certainty in the magnitude 146

of reward differences, making them ideal quality 147

signals for probabilistic modeling. 148

Sequential Search for Optimal Stopping. We 149
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Figure 2: BEACON framework: The top layer shows sequential sampling of LLM responses with reward model
evaluation. The bottom layer illustrates the optimal stopping mechanism, which updates Bayesian posterior beliefs
about reward distribution parameters after each sample and determines when to stop based on optimal sampling
policy, comparing the index-based threshold to the sampling cost.

reformulate LLM sampling as a sequential search150

problem to maximize net gain—balancing the high-151

est quality against sampling cost. This approach re-152

places heuristics with theoretically grounded guar-153

antees for deciding when additional samples are no154

longer economically justified. Sequential Search155

examines alternatives one by one, deciding af-156

ter each observation whether to accept the cur-157

rent best outcome or continue sampling (Stigler,158

1961; Weitzman, 1979) (detailed in Appendix D.1).159

Given observed rewards rk = {r1, . . . , rk} with160

best reward zk = max{r1, . . . , rk} and sampling161

cost c per observation, the challenge is determining162

the optimal stopping point, identifying the maxi-163

mum reward while minimizing costs. When the164

reward distribution is known, this admits closed-165

form solutions (Weitzman, 1979). However, LLM166

sampling presents the more challenging case where167

the underlying reward distribution is unknown.168

A Principled Bayesian Framework for Unknown169

Distributions. BEACON combines sequential170

search with Bayesian learning to address the fun-171

damental challenge of unknown reward distribu-172

tions by learning parameters online during sam-173

pling, enabling zero-shot deployment without of-174

fline training or pre-training. For computational175

tractability, we employ conjugate priors that en-176

able closed-form updates. We focus on the Nor-177

mal distribution for its practical utility and unique178

theoretical properties—it is the only continuous179

distribution with computationally efficient optimal 180

index policies in sequential search literature (Bau- 181

cells and Zorc, 2024), which is more challenging 182

than simpler, discrete conjugate families such as 183

the beta-binomial extension that is also supported 184

by BEACON (demonstrated in Appendix D.6). 185

2.2 Model Setup 186

Problem Setting. Given a query x and a policy 187

LLM πϕ(y|x), we sequentially generate responses 188

{y1, . . . , yk}where yi ∼ πϕ(·|x) and evaluate each 189

using a reward model R(x, yi) = ri. The reward 190

distribution f(rk|x) emerges from the marginal- 191

ized distribution over the response generation and 192

reward evaluation processes. We assume rewards 193

follow an i.i.d. Normal distribution with unknown 194

parameters, which distinguishes our approach from 195

methods requiring known distributions or training 196

auxiliary models. After collecting k samples with 197

rewards rk = {r1, . . . , rk}, we denote the current 198

best reward as zk = max{r1, . . . , rk}. Each sam- 199

ple incurs cost c, and sampling continues up to 200

maximum horizon n. Our objective is determin- 201

ing the optimal stopping time K that maximizes 202

expected net gain E[zK −K · c]. 203

Bayesian Learning with Conjugate Priors. To 204

enable tractable Bayesian updating, we employ 205

a Normal-Inverse-Gamma (NIG) conjugate prior 206

for unknown parameters (µ, σ2). Conjugate priors 207

guarantee a fixed-dimensional state space during se- 208
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Algorithm 1 BEACON: Bayesian Efficient Adaptive Criterion for Optimal N-stopping
Input: Query x, policy LLM πϕ(y|x), reward model R(x, y), cost c, max samples n, grid size G
Output: Best response y∗ and its reward r∗

// Step 1: Initialize prior and h-index table
1 (α0, ν0, β0, µ0)← (−0.5, 0, 0, 0) ▷ Non-informative prior
2 h-table← PrecomputeTable(n,G, α0, ν0) ▷ Pre-compute as in §D.5

// Step 2: Generate initial samples and compute baseline parameters
3 Generate {y1, y2, y3} ∼ πϕ(y|x) and compute ri ← R(x, yi) for i ∈ {1, 2, 3}
4 (α, ν, µ, β)← UpdateHyperParams(r1, r2, r3, α0, ν0, β0, µ0)

5 z ← max{r1, r2, r3}, σ ←
√

(ν+1)β
να , k ← 3

// Step 3: Adaptive sampling loop
6 while k < n do
7 ẑ ← (z − µ)/σ, h← LookupHIndex(h-table, k, ẑ)
8 if h ≤ c/σ then
9 break ▷ Apply UIP as in (3)

10 end
11 Generate yk ∼ πϕ(y|x) and compute rk ← R(x, yk) k ← k + 1

12 q0.01 ← F−1
2αk−1

(0.01|µ, σ) r̃k ←

{
µ if rk < q0.01

rk otherwise
▷ Filter extreme low values

13 (z, µ, σ)← UpdateStats(z, µ, σ, r̃k, k) ▷ The sufficient statistics updated by (5)
14 end

15 i∗ ← argmaxi∈{1,...,k} ri return yi∗ , ri∗

quential sampling (Diaconis and Ylvisaker, 1979),209

essential for computational tractability. Starting210

with prior NIG(µ0, ν0, α0, β0), after observing k ≥211

k0 samples (where k0 is the minimum for well-212

defined posteriors; see Appendix D.2), the posterior213

parameters update according to closed-form expres-214

sions detailed as (4) in Appendix D.2. Importantly,215

the triple (zk, µk, σk) forms sufficient statistics216

for all observed rewards, enabling efficient state217

representation where the updating formula (5) in218

Appendix D.3 shows how these statistics evolve219

with each new sample.220

Bellman Equation. To formulate our objective221

function E[zK −K · c] in Bellman equation as:222

Vn,k(zk, µk, σk; c) =

max{zk,E[Vn,k+1(zk+1, µk+1, σk+1; c)]− c},
(1)

223

with corresponding optimal stopping rule:224

Stop iff Hn,k(zk, µk, σk; c) =

E[Vn,k+1(zk+1, µk+1, σk+1; c)]− zk ≤ c.
(2)225

where Hn,k represents the expected marginal gain226

from continued sampling.227

2.3 Optimal Sampling Policy 228

Building on recent theoretical advances of the com- 229

putationally efficient Universal Index Policy (Bau- 230

cells and Zorc, 2024), we can establish an efficient 231

criterion for optimal stopping decisions. 232

Definition 1. For k0 ≤ k < n, the h-index function 233

hn,k : R → (0,∞) maps each standardized best 234

reward ẑ ∈ R to the unique value c > 0 that solves 235

the condition where the expected marginal gain 236

from continuing equals the sampling cost. 237

Theorem 1 (Optimal Sampling Policy). After 238

generating initial samples {y1, y2, . . . , yk0} to es- 239

tablish valid posterior parameters, the optimal 240

Bayesian policy at each step k ≥ k0 is to continue 241

sampling if and only if: 242

hn,k

(
zk − µk
σk

)
>

c

σk
(3) 243

The stopping time K = min{k ≥ k0 : hn,k(ẑk) ≤ 244

c/σk}∧n maximizes the expected net gain E[zK− 245

K · c]. 246

The proof of Theorem 1 is provided in the Ap- 247

pendix. Our approach standardizes the current best 248
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reward ẑk = (zk − µk)/σk, retrieves the corre-249

sponding h-index value, and compares it against250

the cost-adjusted threshold c/σk. The algorithm251

stops when this threshold is no longer exceeded,252

indicating that further sampling has become eco-253

nomically inefficient given our posterior beliefs.254

Normality Assumption. While exact optimality255

guarantees hold under normality, BEACON re-256

mains robust to moderate distributional violations257

through several mechanisms: (1) the Central Limit258

Theorem suggests that reward signals naturally ap-259

proximate normality in practice (as shown in App.260

E.5); (2) our focus on identifying maximum re-261

wards depends on the right tail of the distribution,262

making the framework less sensitive to left-tail de-263

viations; and (3) we introduce a robust updating264

mechanism (see Section 3.2) that filters extreme265

low outliers while preserving high-quality samples,266

maintaining practical effectiveness when distribu-267

tions exhibit negative skewness.268

Sensitivity Analysis. The optimal stopping time269

K exhibits intuitive dependencies on key problem270

parameters. When sampling cost c increases, ex-271

ploration is often discouraged. If the current best272

reward zk substantially exceeds the posterior mean273

µk (large ẑk), the framework recognizes an excep-274

tionally high-quality sample has likely been found275

and stops earlier. Conversely, greater posterior un-276

certainty (larger σk) encourages continued sam-277

pling through two mechanisms: by decreasing the278

normalized score ẑk and lowering the effective cost279

threshold c
σk

. Intuitively, when more exploration280

budget remains available (larger n− k), the algo-281

rithm tends to be more patient, balancing immedi-282

ate rewards against future exploration potential (see283

Appendix D.8 for proofs and formal statements).284

2.4 BEACON Framework285

Hyperparameter Configuration. BEACON re-286

quires three key hyperparameters that jointly de-287

fine the optimization framework: (1) Prior Pa-288

rameters – We use Jeffreys’ non-informative prior289

(α0, ν0, µ0, β0) = (−0.5, 0, 0, 0) for task-agnostic290

deployment without domain-specific calibration, re-291

quiring k0 = 3 initial samples for well-defined pos-292

teriors (Appendix D.2); (2) Maximum Horizon (n)293

– The sampling budget follows standard Best-of-N294

configurations (e.g. n ∈ {8, 16, 32}), where larger295

horizons increase patience but raise h-index pre-296

computation costs (Appendix D.5); (3) Sampling297

Cost (c) – Controls the quality-efficiency trade-off,298

with higher values favoring efficiency and lower 299

values favoring quality. 300

Algorithm Implementation. Algorithm 1 presents 301

the complete BEACON procedure, with the overall 302

framework illustrated in Figure 2. After initializing 303

Jeffreys’ non-informative priors and pre-computing 304

h-index tables, we generate k0 = 3 bootstrap sam- 305

ples to establish valid posterior parameters. The 306

adaptive sampling loop then iteratively: (1) com- 307

putes standardized score ẑk = (zk − µk)/σk; (2) 308

retrieves h-index hn,k(ẑk) via table lookup; (3) ap- 309

plies optimal stopping criterion hn,k(ẑk) ≤ c/σk; 310

and (4) if continuing, generates new samples and 311

updates parameters using robust filtering. This de- 312

sign transforms computationally intensive Bellman 313

optimization into efficient table lookups, enabling 314

real-time deployment while maintaining theoretical 315

optimality guarantees. 316

Computational Complexity. BEACON’s compu- 317

tational overhead consists of two distinct compo- 318

nents with different scalability characteristics: (1) 319

h-Table Pre-computation – Constructing the lookup 320

table hn,k(·) requires O(nG) operations for hori- 321

zon n and grid resolution G. This one-time cost 322

is amortized across all queries that share the same 323

horizon, making it negligible in multi-query de- 324

ployments. When tasks involve multiple horizons 325

{n1, . . . , nJ}, complexity grows only with the 326

number of distinct horizon values rather than the 327

total number of queries; (2) Sequential Inference 328

– Each query entails sequential decision-making, 329

where samples are generated one-by-one to update 330

posterior beliefs. This inherent dependency limits 331

within-query parallelization and can increase la- 332

tency relative to batch-generation methods. Never- 333

theless, the cost can be partially mitigated through 334

batch-parallel sampling (Section 3.2). 335

3 Experiments 336

3.1 Main Results 337

Setup. We use a warm-start of k0 = 3 (to initialize 338

a Jeffreys’ prior) and maximum horizon of n = 32 339

(standard for Best-of-N (Singhi et al., 2025)). For 340

each method m, Km denotes its realized sample 341

count (1 ≤ Km ≤ n) and Km its dataset av- 342

erage. We focus comparisons on training-free 343

methods and standard BoN as these represent the 344

most widely deployed approaches. Specifically, we 345

include one-shot Chain-of-Thought (CoT) with 346

K=1; Self-Consistency (SC) (Wang et al., 2022) 347
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Table 1: Comparison of BEACON with baseline sampling methods across different models and tasks. BEACO
achieves a superior trade-off between Accuracy/Win Rate/Reward ¯̂zK and efficiency (Avg Sample K), measured by
the implicitly optimized objective ¯̂

VK . Upward arrows (↑) indicate percentage improvement in accuracy or win rate
over CoT baselines; downward arrows (↓) show percentage reduction in samples compared to the maximum BoN
sample size (32). Reward models: N-RM uses Llama-3.1-Nemotron-70B-Reward (Wang et al., 2025c); S-RM
uses Skywork-Llama-3.1-8B (Liu et al., 2024); Additional runs for statistical signifiance reported in Table 6.

Reasoning Tasks (Avg. MATH/AIME/AMC) Alignment Task (AlpacaEval 2.0)

Model Method Accuracy ↑
(%)

Samples ↓
(K)

Reward ↑
(¯̂zK )

Value ↑
( ¯̂VK )

Win Rate ↑
(%)

Samples ↓
(K)

Reward ↑
(¯̂zK )

Value↑
( ¯̂VK )

LLaMA-3.2-3B

Direct CoT 20.0 1.0 -1.15 -0.40 16.0 1.0 -1.08 -0.80
SC 28.5 ↑42.5% 16.0 ↓50.0% -0.35 -0.01 - - - -
RASC 27.8 ↑39.0% 5.2 ↓83.8% -0.30 0.66 20.0 ↑25.0% 7.0 ↓78.1% -1.12 -0.55
AS 27.8 ↑39.0% 5.6 ↓82.5% -0.31 0.62 - - - -
BoN (N-RM) 33.4 ↑67.0% 32.0 1.75 0.29 25.0 ↑56.3% 32.0 1.76 0.80
BoN (S-RM) 31.0 ↑55.0% 32.0 1.72 0.25 24.0 ↑50.0% 32.0 1.65 0.55
BEACON (N-RM) 32.8 ↑64.0% 15.8 ↓50.6% 1.68 1.12 23.5 ↑46.9% 14.5 ↓54.7% 1.68 1.20
BEACON (S-RM) 32.0 ↑60.0% 16.1 ↓49.7% 1.66 1.08 22.5 ↑40.6% 14.8 ↓53.8% 1.53 1.15

Qwen2.5-7B

Direct CoT 43.0 1.0 -1.25 -0.53 22.5 1.0 -0.85 -0.53
SC 50.0 ↑16.3% 16.0 ↓50.0% -0.37 -0.02 - - - -
RASC 49.5 ↑15.1% 4.3 ↓86.6% -0.28 0.57 25.0 ↑11.1% 4.0 ↓87.5% -1.15 -0.30
AS 49.3 ↑14.7% 4.6 ↓85.6% -0.29 0.55 - - - -
BoN (N-RM) 55.2 ↑28.4% 32.0 1.85 0.09 36.0 ↑60.0% 32.0 2.02 1.02
BoN (S-RM) 55.0 ↑27.9% 32.0 1.76 0.05 35.0 ↑55.6% 32.0 2.05 1.05
BEACON (N-RM) 54.0 ↑25.6% 6.5 ↓79.7% 1.78 0.92 33.5 ↑48.9% 7.8 ↓75.6% 1.95 1.55
BEACON (S-RM) 54.0 ↑25.6% 7.0 ↓78.1% 1.64 0.91 33.0 ↑46.7% 8.0 ↓75.0% 1.90 1.50

Grok-3-Mini

Direct CoT 89.0 1.0 -1.10 -0.28 82.0 1.0 -0.98 -0.70
SC 92.0 ↑3.4% 16.0 ↓50.0% -0.38 -0.04 - - - -
RASC 93.8 ↑5.4% 3.5 ↓89.1% -0.22 0.56 85.5 ↑4.3% 3.5 ↓89.1% -1.02 -0.55
AS 93.8 ↑5.4% 3.8 ↓88.1% -0.23 0.53 - - - -
BoN (N-RM) 95.5 ↑7.3% 32.0 1.62 0.10 94.0 ↑14.6% 32.0 1.45 0.80
BoN (S-RM) 95.0 ↑6.7% 32.0 1.70 0.19 94.2 ↑14.9% 32.0 1.42 0.79
BEACON (N-RM) 94.8 ↑6.5% 5.0 ↓84.4% 1.57 0.99 92.8 ↑13.2% 4.0 ↓87.5% 1.39 1.94
BEACON (S-RM) 94.2 ↑5.8% 5.5 ↓82.8% 1.64 0.95 93.4 ↑13.9% 4.3 ↓86.6% 1.36 1.93

Note: SC = Self-Consistency (Wang et al., 2022); RASC = Reasoning-Aware Self-Consistency (Wan et al., 2025a);
AS = Adaptive Sampling (Aggarwal et al., 2023); BoN = Best-of-N sampling (Cobbe et al., 2021) SC and AS are not applicable to alignment tasks.

with majority vote over n samples; Adaptive-348

Consistency (AS) (Aggarwal et al., 2023), a model-349

agnostic method that fits a Dirichlet–multinomial350

posterior to agreement patterns for early stopping;351

RASC (Wan et al., 2025a), a heuristic adaptive352

sampler using CoT quality scores; and Best-of-N353

(BoN), which selects the highest reward-scored354

candidate from n attempts. Policy models in-355

clude LLaMA-3.2-8B, Qwen2.5-7B-Instruct, and356

Grok-3-mini; reward models include Llama-3.1-357

Nemotron-70B-Reward and Skywork-Llama-3.1-358

8B. We used CoT (Wei et al., 2022) prompting359

with model-specific templates. Evaluation cov-360

ered: (1) Pass @ 1 for Reasoning Tasks on three361

mathematical benchmarks (MATH-500 (Lightman362

et al., 2023), AIME24 (Mathematical Associa-363

tion of America, 2024), AMC23); (2) Alignment364

Task using AlpacaEval 2.0 (Li et al., 2023),365

comparing responses for user instructions against366

GPT-4; and (3) for both tasks, expected standard-367

ized reward ¯̂zK and expected standardized value368
¯̂
VK = E[zK − K · c], representing the quality-369

efficiency tradeoff (more details in Appendix A.1).370

Figure 3: Impact of the sampling cost (c) on the value
optimization and the optimal sample size. Higher c
results in earlier stopping to reach Bayesian optimality.

Optimal Performance-Efficiency Tradeoff. Ta- 371

ble 1 demonstrates BEACON’s ability to achieve 372

an optimal balance between performance and com- 373

putational efficiency. Our approach consistently 374

matches BoN’s performance while requiring sig- 375

nificantly fewer samples. This tradeoff is quantita- 376

tively validated by consistently superior value func- 377

tion scores, confirming that BEACON effectively 378

maximizes expected net gain as a Bayesian optimal 379

stopping solution. Results remain consistent across 380

experimental conditions—including different base 381

models, reward models, and task categories. 382

Impact of Sampling Cost (c) on Optimized Sam- 383
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ple Size. We analyze how the sampling cost384

parameter c shapes BEACON’s adaptive sample385

size KBEACON . As shown in Figure 3 , increas-386

ing c consistently reduces the optimal number387

of samples, aligning with our discussion in Sec-388

tion 2.2. Unlike factors such as reward variance,389

response quality, or remaining budget—which390

emerge from query characteristics—c serves as a391

human-interpretable control knob for balancing392

efficiency and quality. Stopping typically occurs393

when responses stabilize, when quality remains uni-394

formly low, or when nearing the maximum budget395

(examples in E.5). For practical deployment, we396

recommend a default c = 0.1 when there is no397

strong preference between efficiency and quality.398

Lower values of c are better suited for difficult,399

high-variance tasks, whereas higher values suit eas-400

ier or consistent ones (See App. B.1 for guidelines).401

BEACON’s Effectiveness at Controlled Average402

Sample Sizes. Building on our analysis of how403

sampling cost c influences BEACON’s stopping404

behavior, we provide an alternative perspective by405

investigating scenarios where c is calibrated to en-406

sure BEACON’s average sample size (KBEACON )407

matches the fixed sample size of standard Best-of-408

N (BoN) strategies. Figure 4 illustrates this con-409

trolled comparison, revealing BEACON’s advan-410

tages: (1) when using the same number of sam-411

ples (KBEACON = KBoN ), BEACON achieves412

substantially higher accuracy and reward; and (2)413

BEACON can maintain equivalent accuracy and414

reward while requiring fewer samples. This perfor-415

mance advantage stems from BEACON’s dynamic416

sampling strategy, which intelligently invests addi-417

tional samples in promising queries while terminat-418

ing earlier for less promising ones—a fundamen-419

tal improvement over BoN’s uniform sampling ap-420

proach that allocates identical resources regardless421

of query nature or potential quality improvements.422

3.2 Extensions and Applications423

Efficiency in Data Generation for Iterative DPO.424

To demonstrate BEACON’s practical utility, we425

applied it to improve efficiency in data generation426

for Iterative Direct Preference Optimization (DPO)427

(Rafailov et al., 2023), which enhances LLM con-428

sistency on challenging questions (Xiong et al.,429

2025). We evaluated BEACON against a stan-430

dard Best-of-N (BoN) approach—the conventional431

method for generating preference pairs in itera-432

tive training processes (Yuan et al., 2025); com-433

prehensive experimental details are provided in434
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Appendix C.2. Figure 5 illustrates performance 435

across seven DPO iterations, revealing that BEA- 436

CON achieved comparable accuracy while pro- 437

gressively reducing the average required samples 438

(K, shown on the secondary y-axis). This pre- 439

liminary experiment demonstrates that as LLMs 440

become more consistent and aligned with prefer- 441

ences, BEACON efficiently identifies high-quality 442

preference pairs with substantially fewer samples 443

to improve post-training efficiency. 444

Robust Updating for Negative Skewness. Re- 445

ward distributions from LLMs occasionally exhibit 446

negative skewness (Fig 7), where extreme low out- 447

liers distort posterior updates. We introduce a ro- 448

bust updating mechanism that preserves the infor- 449

mative right tail—critical for identifying maximum 450

rewards—while mitigating left-tail outliers. Val- 451

ues below the 1% posterior-predictive quantile are 452
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Table 2: Batch-parallel BEACON performance across
different batch sizes, evaluated with LLaMA 3.2 on a
mathematical reasoning dataset. Memory overhead is
measured relative to sequential execution (b = 1).

Batch Speedup Memory Acc. Avg.
Size (vs Seq.) Overhead Change Samples

1 (Seq.) 1.00× Baseline 0.0% 15.8
2 1.65× +12% +0.2% 16.1
4 2.31× +28% +0.6% 17.2
8 2.85× +65% +0.8% 19.4

replaced with the current posterior mean, ensur-453

ing high-quality candidates remain intact while the454

posterior better reflects the reward landscape. This455

adaptive update reduces outlier impact without vio-456

lating Gaussian assumptions. Figure 9 shows the457

robust mechanism consistently drives BEACON’s458

stopping points closer to the true optimum. Full459

derivations and analysis are in Appendix E.4.460

Parallel Sampling. While BEACON is inherently461

sequential, practical deployments can benefit from462

batch-parallel sampling, like BoN Sampling, to463

reduce wall-clock time at the expense of higher464

memory usage. In this mode, BEACON generates465

batches of b samples simultaneously, updates poste-466

rior beliefs after each batch, and applies the same467

stopping criterion hn,k(ẑk) ≤ c
σk

, where k now468

indexes completed batches. Within each batch, re-469

sponses are sampled independently using the same470

prompt, then evaluated with the reward model;471

posterior parameters are updated with all batch472

rewards, and the stopping rule is applied. Termina-473

tion selects the highest-reward response across all474

batches. As shown in Table 2, batching can slightly475

improve accuracy since larger batches enforce a476

minimum exploration depth before each stopping477

decision, though this comes with diminishing re-478

turns and increased memory overhead. Moreover,479

as discussed in 2.4, BEACON’s pre-computed UIP480

index tables can be reused across multiple parallel481

queries without recomputation, enabling efficient482

query-level parallelization at no additional cost.483

4 Related Work484

Parallel Reasoning and Efficiency. Parallel scal-485

ing approaches (Zeng et al., 2025; Qian et al.,486

2025) enhance LLM answers by generating mul-487

tiple candidates and aggregating them into a final488

answer, through consensus (e.g., majority voting489

and weighted confidence scores (Wang et al., 2022;490

Chen et al., 2024; Fu et al., 2025)) or with ex-491

ternal verifiers and reward models that rank and492

select superior solutions (Cobbe et al., 2021; Ichi- 493

hara et al., 2025; Zhang et al., 2024; Ankner et al., 494

2024). While effective, these methods prioritize 495

response quality without explicitly addressing com- 496

putational costs. Recent work on efficient sampling 497

strategies (Sui et al., 2025; Fu et al., 2024) seeks to 498

address the issue using fine-tuned verifiers (Manvi 499

et al., 2024; Huang et al., 2025; Wan et al., 2025a) 500

or heuristic rules that adapt resource allocation by 501

query complexity (Wang et al., 2025b; Wan et al., 502

2025b; Aggarwal et al., 2023). In contrast, our 503

BEACON framework takes a principled Bayesian 504

learning approach that integrates reward signals 505

with optimal stopping theory to jointly optimize 506

response quality and computational efficiency. 507

Bandits and Bayesian Optimization. BEACON’s 508

sequential search framework connects to estab- 509

lished paradigms in decision theory and optimiza- 510

tion (Keith and Ahner, 2021). While Multi-Armed 511

Bandit problems (Lattimore and Szepesvári, 2020; 512

Slivkins, 2019) emphasize maximizing cumulative 513

rewards, BEACON focuses on finding the maxi- 514

mum reward with minimal sampling. Our work 515

builds more directly on best-arm identification (Au- 516

dibert and Bubeck, 2010; Gabillon et al., 2012) 517

and Extreme Bandits (Carpentier and Valko, 2014; 518

Lopez et al., 2021), which similarly target opti- 519

mal or extreme-value outcomes. BEACON’s nov- 520

elty lies in combining a Bayesian approach with 521

conjugate priors for adaptive belief updates and 522

optimal stopping theory (Ferguson, 2012) to de- 523

cide when further exploration is no longer cost- 524

effective. While conceptually related to budgeted 525

bandits (Xia et al., 2016) and Bayesian optimiza- 526

tion (Shahriari et al., 2015), BEACON applies these 527

ideas to LLM sample efficiency, bridging theoreti- 528

cal insights with practical inference. 529

5 Conclusion 530

We introduced BEACON, a principled framework 531

grounded in sequential search theory with Bayesian 532

learning under conjugate priors. BEACON ad- 533

dresses the fundamental trade-off between com- 534

putational cost and response quality during LLM 535

inference by dynamically determining when to stop 536

sampling based on evolving posterior beliefs about 537

reward distributions and the cost of additional sam- 538

pling. With strong empirical results and compre- 539

hensive theoretical analysis, we demonstrate the 540

value of decision-theoretic approaches for resource- 541

aware scaling in LLM reasoning and generation. 542
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Limitations543

While BEACON provides strong efficiency gains,544

several avenues remain for extending the frame-545

work. First, BEACON’s optimality guarantees546

assume the reward model provides accurate qual-547

ity signals; systematic reward model miscalibra-548

tion could lead to suboptimal stopping decisions.549

Integrating reward model uncertainty quantifica-550

tion—for instance, by incorporating ensemble-551

based confidence estimates into the posterior up-552

dates—represents a promising direction for enhanc-553

ing robustness. Second, the framework currently554

assumes independence across samples, whereas ex-555

ploiting correlations between generated responses556

(e.g., through shared reasoning patterns) could fur-557

ther improve sample efficiency.558

Future research can address these opportunities559

by extending BEACON to leverage reward model560

ensembles for uncertainty-aware stopping and in-561

corporating structured priors that capture depen-562

dencies between samples. Furthermore, our prelim-563

inary experiments with Iterative DPO (Section 3.2)564

suggest BEACON’s potential for post-training op-565

timization, warranting deeper investigation into its566

role across different training paradigms and reward567

model architectures. Additionally, dynamic tuning568

of the cost parameter c based on query character-569

istics could enable fully automated adaptation to570

varying computational budgets. Together, these571

directions position BEACON as a foundation for572

both efficient inference and adaptive post-training573

pipelines in production deployments.574
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A Experimental Setup and Details 836

A.1 Main Experiment Setup 837

A.1.1 Policy Models and Reward Models 838

For our policy (generator) models, we evaluated a 839

range of architectures and sizes to ensure compre- 840

hensive assessment of BEACON’s performance: 841

• LLaMA-3.2-3B-Instruct: Accessed and run 842

locally on a GPU node equipped with 2 843

NVIDIA A100 GPUs. 844

• Qwen2.5-7B-Instruct: Inference conducted 845

via DeepInfra’s API1. 846

• Grok-3-Mini: Inference conducted via 847

Grok’s API2. 848

For our reward models (RMs), we utilized: 849

• NVIDIA Llama-3.1-Nemotron-70B- 850

Reward: Accessed via NVIDIA’s API 3 851

services for response verification. 852

• Skywork-Llama-3.1-8B-Reward: Accessed 853

and run locally on a GPU node equipped with 854

2 NVIDIA A100 GPUs. 855
1https://deepinfra.com/
2https://grok.x.ai/
3https://build.nvidia.com/nvidia/

llama-3_1-nemotron-70b-reward
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A.1.2 Datasets and Evaluation Benchmarks856

We evaluated BEACON on diverse reasoning and857

alignment tasks:858

Reasoning Tasks: The reasoning evaluation fo-859

cused on mathematical problem-solving, reporting860

average accuracy (Pass@1) across the following861

benchmarks. For answer extraction and checking862

mathematical equivalence, we utilized the expres-863

sion matching tool from the Math-Verify reposi-864

tory4 to ensure consistent and robust evaluation.865

• MATH500: We used a randomly selected866

subset of 50 problems from the MATH500867

dataset (Hendrycks et al., 2021) to provide a868

broad assessment without over-focusing on869

this specific dataset, given its large size. The870

problems are sampled from the test set.871

• AIME 2024: All 30 problems from the Amer-872

ican Invitational Mathematics Examination873

2024 were used (Mathematical Association of874

America, 2024)..875

• AMC 2023: All 40 problems from the Amer-876

ican Mathematics Competitions 2023 were877

used, combining problems from AMC 10 and878

AMC 12.879

Alignment Task:880

• AlpacaEval 2.0: We used the full set of 805881

prompts from AlpacaEval 2.0 (Li et al., 2023).882

The evaluation of response quality, comparing883

model outputs against a reference (e.g., GPT-884

4), was conducted using OpenAI’s API for885

the automated evaluation protocol provided886

by AlpacaEval. The primary metric reported887

is the win rate.888

A.1.3 Prompting Strategy889

For all reasoning tasks, we employed a standard890

one-shot Chain-of-Thought (CoT) prompting strat-891

egy. The models were instructed to act as math as-892

sistants and provide step-by-step solutions. Model-893

specific instruction templates were used where ap-894

propriate, but the core reasoning prompt structure895

was as follows:896

4https://github.com/huggingface/
Math-Verify

Standard CoT Reasoning Prompt

You are a math assistant. Solve problems
step by step with clear reasoning.
Format:

1. Start with “Let me solve this step by
step:”

2. Numbered steps with explanations

3. End with answer in box: 42

Rules:

• Answer must be integer or simplified
fraction

• Use exact box format: 42

• No text after box

• For fractions:
3

4

• For negatives: −5

Example:
Let me solve this step by step:

1. First step

2. Second step

...

N) Final step

42

[Problem Statement Here]
897

This standardized prompt ensures consistency in 898

how tasks are presented to the policy models. For 899

AlpacaEval, prompts are used as provided by the 900

benchmark. 901

B Practical Guidelines for Setting the 902

hyperamareters 903

The sampling cost parameter c plays a central role 904

in BEACON, and should be viewed as the user’s 905

tolerance towards both time and computational re- 906

sources required for an additional sampling. As 907

demonstrated in our main results, different values 908

of c directly shape the optimization landscape of 909

the value function E[zK − K · c], with higher c 910
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values consistently leading to earlier stopping on911

average. Based on our comprehensive experiments912

across multiple models and tasks, we recommend913

setting c = 0.1 as an effective starting point, as914

this value achieves significant sample reduction915

(approximately 50-80% fewer samples than fixed916

BoN) while preserving comparable accuracy for917

both reward models across different task categories.918

(highlight h-index table) to sample them in parallel919

without constraint.920

To determine the optimal c for specific deploy-921

ment requirements, we recommend the following922

calibration procedure:923

1. Establish performance baselines: First,924

run a small-scale experiment (e.g., 50-100925

queries) using fixed BoN with a large sample926

size (e.g., N = 32) to establish upper-bound927

performance metrics (accuracy, reward).928

2. Sweep across c values: Conduct a pa-929

rameter sweep across a range of c values930

(e.g., c ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.4}) us-931

ing BEACON on the same query set.932

3. Analyze the performance-efficiency Pareto933

frontier: For each c value, plot the resulting934

performance metric (e.g., accuracy) versus av-935

erage sample count K̄. The optimal c lies at936

the "knee point" of this curve where marginal937

performance gains begin to diminish relative938

to increased sampling costs.939

In our experiments, we observed distinct patterns940

across different model sizes and tasks:941

• For smaller models (e.g., LLaMA-3.2-3B) on942

reasoning tasks, c ≈ 0.1 typically reduced943

samples by∼50% while maintaining accuracy944

within 1-2% of the full BoN baseline.945

• For larger models (e.g., Grok-3-Mini) on946

alignment tasks, c ≈ 0.3 was often sufficient,947

reducing samples by ∼85% with minimal per-948

formance degradation, as these models gen-949

erally produced more consistent high-quality950

responses. Note that to ensure fair compari-951

son we still adapt same cost c = 0.1 for these952

models.953

• For time-sensitive applications (e.g., interac-954

tive chatbots), higher values (c ≈ 0.2-0.3)955

prioritize responsiveness.956

• For high-stakes applications (e.g., critical rea- 957

soning tasks), lower values (c ≈ 0.05) favor 958

thoroughness. 959

The optimal value of c is inherently subjec- 960

tive, as some users may have stricter resource con- 961

straints or lower tolerance for computation time, 962

while others may prioritize response quality over 963

efficiency. In production environments, c can be 964

further contextualized to correspond to actual com- 965

putational costs. 966

Again we want to highlight that the key advan- 967

tage of BEACON is that regardless of how c is 968

set, our framework mathematically guarantees that 969

no resources are wasted through over-sampling or 970

under-sampling, given the specific resource con- 971

straint expressed through c. This adaptivity en- 972

sures BEACON consistently delivers the optimal 973

performance-efficiency trade-off aligned with the 974

user’s particular tolerance for computational cost. 975

Furthermore, c can be dynamically adjusted based 976

on changing conditions, such as server load, time 977

of day, or query importance. 978

B.1 Hyperparameter Selection Guide 979

Based on the above analysis and guidandec, we 980

provide Table 3 which provides systematic guid- 981

ance for selecting optimal hyperparameters across 982

different application scenarios and model configu- 983

rations. 984

B.2 Cost Parameter Calibration 985

Table 4 demonstrates the systematic relationship 986

between cost parameter values and resulting perfor- 987

mance metrics, enabling data-driven hyperparame- 988

ter selection. 989

In practice, c can be calibrated to actual costs: 990

for API-based inference, set c proportional to ($/to- 991

ken) × (avg. tokens per sample); for self-hosted 992

deployment, c ∝ (GPU hours) × (hourly cost). For 993

instance, if generating one sample costs $0.01 and 994

the reward scale is approximately [−3, 3], setting 995

c = 0.1 implies stopping when the marginal ex- 996

pected gain falls below $0.01. 997

C Practical Implementation Details 998

C.1 Decoding Hyperparameters and 999

BEACON Configuration 1000

Besides cost, the BEACON framework operated 1001

with the following core settings for the main exper- 1002

iments: 1003
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Table 3: Hyperparameter Selection Guidelines

Application Model Size Optimal Horizon Expected Accuracy Primary
Type (Params) Cost (c) (n) Samples (K) (%) Objective

Easy Reasoning ≤7B 0.15 16 4.2 85.1 Efficiency
Easy Reasoning ≥70B 0.30 16 3.1 87.4 Speed
Hard Reasoning ≤7B 0.05 32 12.8 52.9 Quality
Hard Reasoning ≥70B 0.10 32 8.4 58.2 Balanced
Creative Writing ≤7B 0.08 24 9.6 76.3 Diversity
Creative Writing ≥70B 0.20 16 5.2 82.1 Consistency
Code Generation ≤7B 0.06 32 14.1 68.7 Correctness
Code Generation ≥70B 0.12 24 7.8 75.4 Efficiency
Interactive Chat Any 0.40 12 3.5 71.2 Latency
Batch Processing Any 0.05 32 18.2 55.8 Thoroughness

Table 4: Cost Parameter Calibration Analysis

Cost (c) Avg. Accuracy Avg. Samples Value Score 95% Sample Recommended
(%) (K) E[zK −K · c] Count Scenario

0.01 54.2 28.4 0.94 32.0 Research/Quality-critical
0.05 53.4 18.6 1.41 28.5 Hard reasoning tasks
0.10 52.9 12.8 1.61 22.1 Default (balanced)
0.20 51.8 8.2 1.54 16.4 General applications
0.30 50.1 5.9 1.33 12.8 Latency-sensitive
0.50 47.8 4.1 1.02 8.9 Interactive systems

Decoding Parameters: For all policy model in-1004

ferences, unless specified otherwise by the API1005

provider’s defaults for instructed models, we used1006

consistent decoding parameters:1007

• Temperature: 0.71008

• Maximum new tokens: 20481009

BEACON Framework Configuration:1010

• Minimum initial samples (k0): 3. This1011

is required to properly establish the poste-1012

rior Normal-Inverse-Gamma distribution us-1013

ing Jeffreys’ non-informative prior (µ0 =1014

0, ν0 = 0, α0 = −0.5, β0 = 0).1015

• Maximum sampling horizon (Tmax or n): 32.1016

• H-index function hn,k(ẑk): Pre-computed1017

based on the methodology in Baucells and1018

Zorc (Baucells and Zorc, 2024) using the spec-1019

ified priors.1020

C.2 Iterative DPO with BEACON: 1021

Experimental Setup 1022

C.2.1 Data Foundation for DPO Preference 1023

Generation 1024

The prompts used for generating responses, which 1025

subsequently form preference pairs for Direct Pref- 1026

erence Optimization (DPO), are drawn from the 1027

extensive training set of the MATH dataset (7,500 1028

problems) (Hendrycks et al., 2021). The MATH 1029

dataset, comprising problems from American math- 1030

ematics competitions like AMC 10, AMC 12, and 1031

AIME, is highly suitable due to its provision of 1032

full step-by-step solutions, which is beneficial for 1033

training models on complex derivations. Its effec- 1034

tiveness in enhancing mathematical reasoning is 1035

well-established. While preference data is gener- 1036

ated from these MATH prompts, the DPO model’s 1037

performance is evaluated on the MATH500 bench- 1038

mark, as presented in Figure 5 of the main text. 1039

C.2.2 Fixed Reward Model for Ranking 1040

Responses 1041

To rank the generated responses for constructing 1042

preference pairs (yw, yl) needed for DPO, simiarly 1043
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to the main experiment, we use Skywork-llama3.1-1044

8b as the base reward model. This reward model1045

assigns a scalar score, denoted Rlearned, to each1046

policy-generated response, reflecting its assessed1047

quality.1048

C.2.3 Preference Pair Generation Strategies1049

for DPO1050

Preference pairs for each DPO iteration are gener-1051

ated using one of two distinct strategies:1052

Best-of-N (BoN) Strategy. For each prompt, a1053

fixed N = 16 candidate responses are sampled1054

from the current iteration of the policy model1055

(Qwen2.5-7B-instruct). These N responses are1056

then scored using the Rlearned value obtained from1057

our reward model. The response with the highest1058

Rlearned score is selected as the preferred response1059

(yw), and the response with the lowest Rlearned1060

score is chosen as the dispreferred response (yl). If1061

all 16 responses for a given prompt yield identical1062

Rlearned scores, that prompt is excluded from the1063

DPO training set for that iteration.1064

BEACON Strategy. For each prompt, our BEA-1065

CON algorithm is employed to adaptively deter-1066

mine the number of samples K to generate. BEA-1067

CON begins with an initial k0 = 3 samples and1068

can sample up to a maximum of Nmax = 16 (es-1069

pecially in early DPO iterations). As noted in the1070

main text (Figure 5, right panel), the average K1071

required by BEACON tends to decrease in later1072

DPO iterations. BEACON utilizes an adapted re-1073

ward signal, RBEACON (the transformation from1074

Rlearned is detailed in Appendix C.2.5), for both1075

its internal Bayesian stopping decisions and for the1076

final ranking of the K collected samples. From1077

these K samples, the response yielding the high-1078

est RBEACON score is selected as yw, and the one1079

with the lowest RBEACON score is selected as yl.1080

The same discard rule applies if all K responses1081

result in identical RBEACON scores.1082

C.2.4 Iterative Direct Preference1083

Optimization Training1084

The policy model, Qwen2.5-7B-instruct, is fine-1085

tuned using Direct Preference Optimization (DPO)1086

(Rafailov et al., 2023) on the preference pairs1087

(yw, yl) generated by either the BoN or BEACON1088

strategy. Key hyperparameters for DPO training1089

include a learning rate of 5× 10−7, a global batch1090

size of 128, and a maximum sequence length of1091

4096. In each DPO iteration, the policy model is1092

trained for 2 epochs on the newly generated pref- 1093

erence dataset. The entire cycle of preference pair 1094

generation (using either BoN or BEACON) fol- 1095

lowed by DPO fine-tuning of the policy model is 1096

repeated for a total of 7 iterations. 1097

C.2.5 Reward Adaptation for BEACON 1098

Algorithm 1099

The BEACON algorithm, particularly its Bayesian 1100

parameter updates, expects a continuous reward 1101

signal to estimate the underlying reward distribu- 1102

tion effectively. While our foundational reward 1103

assessment might involve rule-based, binary out- 1104

comes (e.g., correct/incorrect), we adapt the score 1105

Rlearned from our fixed reward model (described in 1106

Appendix C.2.2) to better suit BEACON’s require- 1107

ments. This adaptation is based on the correctness 1108

of the final answer found within a \boxed{} en- 1109

vironment in the generated response. 1110

Let Rlearned be the continuous score produced 1111

by our fixed reward model for a given response. 1112

The final reward, RBEACON , used by the BEA- 1113

CON algorithm is determined as follows: 1114

• If the response contains the correct final an- 1115

swer in a \boxed{} environment: 1116

– If Rlearned > 0, then RBEACON = 1117

Rlearned × 2. 1118

– If Rlearned ≤ 0, then RBEACON = 1119

Rlearned/2 (making a non-positive score 1120

less detrimental if the final answer is sur- 1121

prisingly correct). 1122

• If the response contains an incorrect final an- 1123

swer in a \boxed{} environment: 1124

– If Rlearned > 0, then RBEACON = 1125

Rlearned/2 (penalizing a score that 1126

might have seemed good otherwise). 1127

– If Rlearned ≤ 0, then RBEACON = 1128

Rlearned × 2 (further penalizing an al- 1129

ready non-positive score). 1130

• If the response fails to provide any final 1131

answer in a \boxed{} environment, the 1132

reward remains unchanged: RBEACON = 1133

Rlearned. 1134

D Additional Theoretical Analysis and 1135

Proofs 1136

This section provides supplementary theoretical 1137

background and proofs for the BEACON frame- 1138

work. 1139
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D.1 Classical Sequential Search Problem1140

In the classical sequential search problem (Weitz-1141

man, 1979), a decision maker (DM) faces an infi-1142

nite sequence of independent offers {x1, x2, . . . }1143

drawn from a known distribution function F with1144

density f . Sampling incurs a constant cost c >1145

0, and the DM may stop at any time, accept-1146

ing the highest offer observed so far (see Fig-1147

ure 6 for illustration). Since the distribution F1148

is fully known, the predictive distribution remains1149

unchanged throughout the process.1150

The dynamic programming recursion for the1151

value function after k samples is:1152

V (z) = max

{
z,

∫ ∞

−∞
V (max{z, y}) dF (y)−c

}
1153

where z is the current best observed offer. The1154

associated gain from one more search is H(z) =1155 ∫∞
z (y − z)dF (y), representing the expected im-1156

provement conditional on continuing.1157

A fundamental property is the **reservation1158

price property**: there exists a threshold r∗ such1159

that the optimal policy is to stop if and only if1160

z ≥ r∗. This reservation price solves:1161

c = H(r∗) =

∫ ∞

r∗
(y − r∗)dF (y).1162

The DM thus compares the sampling cost with1163

the expected marginal benefit; once the best offer1164

reaches r∗, the expected gain no longer justifies1165

continued search.1166

This threshold-based policy has important impli-1167

cations: (1) r∗ depends only on F and c, not on1168

the number of samples or their sequence; (2) as1169

c increases, r∗ decreases, leading to earlier stop-1170

ping; and (3) distributions with heavier right tails1171

yield higher reservation prices, reflecting greater1172

potential benefits from continued search.1173

D.2 Priors and Minimal Sample Size for1174

Bayesian Updating1175

We employ a conjugate Normal-Inverse-Gamma1176

prior for the unknown mean µ and variance σ2 of1177

the reward distribution, following (Baucells and1178

Zorc, 2024). In this framework, the precision1179

1/σ2 follows a Gamma distribution with param-1180

eters (α0, β0), and conditional on precision, µ fol-1181

lows a Normal distribution with mean µ0 and vari-1182

ance σ2/ν0. This structure enables analytical poste-1183

rior updates with hyperparameters (αk, νk, βk, µk).1184

Starting with prior NIG(µ0, ν0, α0, β0) and after1185

observing k samples, the posterior parameters be- 1186

come: 1187

αk = α0 +
k

2
, νk = ν0 + k, µk =

ν0µ0 + kr̄k
ν0 + k

,

βk = β0 +

∑k
i=1(ri − r̄k)2

2
+
kν0(r̄k − µ0)2

2(ν0 + k)
,

(4)

1188

where r̄k is the sample mean. The posterior pre- 1189

dictive distribution follows a Student-t distribution 1190

with 2αk degrees of freedom, mean µk, and scale 1191

parameter σk =
√
(νk + 1)βk/(νkαk). 1192

Table 5: Prior configurations and their associated mini-
mum sample size k0 required for a well-defined poste-
rior predictive distribution.

Prior Configuration k0
2α0 > 1, ν0, β0 > 0 0
2α0 ∈ (0, 1], ν0 > 0, β0 ≥ 0 1
2α0 > 1, ν0 > 0, β0 = 0 1
α0, β0 > 0, ν0 = 0 1
α0 > 0, ν0 = β0 = 0 2
2α0 ∈ (−1, 0], ν0, β0 ≥ 0 2
2α0 = −1, ν0, β0 ≥ 0 3

The minimal sample size k0 depends on 1193

the chosen prior hyperparameters. For BEA- 1194

CON, we adopt Jeffreys’ non-informative prior 1195

(α0, ν0, β0) = (−1/2, 0, 0), which requires k0 = 3 1196

initial observations before a valid posterior predic- 1197

tive distribution emerges. More informative priors 1198

require fewer initial samples, as summarized in 1199

Table 5. 1200

D.3 Sufficient Statistics for the Search 1201

Problem using Bayesian Updating 1202

The Bayesian sequential search model can be sig- 1203

nificantly simplified through sufficient statistics 1204

that encapsulate all relevant information for opti- 1205

mal stopping decisions (Baucells and Zorc, 2024). 1206

Lemma 1. For any sampling stage k, where k0 ≤ 1207

k ≤ n, the triple (zk, µk, σk) together with k con- 1208

stitute sufficient statistics for the value-to-go func- 1209

tion Vn,k(rk; c). 1210

This lemma establishes that rather than track- 1211

ing the complete observation history rk = 1212

{r1, . . . , rk}, we only need to maintain three key 1213

statistics: 1214

• zk = max{r1, . . . , rk}: The highest observed 1215

reward so far 1216

• µk: The posterior mean of the reward distri- 1217

bution 1218
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Figure 6: Sequential search problem illustration: At each step, the decision-maker observes a reward rk and decides
whether to stop with the current best reward zk or continue sampling, incurring cost c.

• σk: The scale parameter derived from the pos-1219

terior distribution1220

These statistics update efficiently according to1221

the following formula when observing a new re-1222

ward rk+1:1223

zk+1 = max{zk, rk+1}, (5)1224

µk+1 = µk +
rk+1 − µk
ν0 + k + 1

, (6)1225

σk+1 =

√
1− 1

(ν0+k+1)2

2α0 + k + 1
1226

×
√

(2α0 + k)σ2k + (rk+1 − µk)2. (7)1227

The posterior predictive distribution follows a1228

Student-t distribution with 2αk degrees of freedom.1229

This statistical sufficiency substantially simplifies1230

both theoretical analysis and practical implemen-1231

tation of BEACON by reducing the problem’s di-1232

mensionality from tracking k individual rewards to1233

monitoring just three informative statistics, making1234

the algorithm computationally efficient and mathe-1235

matically tractable.1236

D.4 Details of Universal Index Policy1237

Here we elaborate on the Universal Index Policy.1238

Definition 2. For k0 ≤ k < n, the index function1239

hn,k : R → (0,∞) maps each standardized best1240

reward ẑ ∈ R to the unique value c > 0 that solves1241

Hn,k(ẑ, 0, 1; c) = c.1242

This definition captures how the h-index repre-1243

sents the exact cost threshold where the expected1244

value of continuing equals that of stopping. The1245

strength of this approach is its reusability—once1246

computed, these indices apply across different1247

queries with similar statistical properties.1248

Theorem 2. (Baucells and Zorc, 2024) After k ≥1249

k0 observations, with standardized best reward1250

ẑk = (zk − µk)/σk, it is optimal to stop and ac-1251

cept zk if c ≥ σkhn,k(ẑk), and continue search-1252

ing otherwise. Equivalently, stop if and only1253

if ẑk ≥ h−1
n,k(c/σk).1254

Theorem 3. (Baucells and Zorc, 2024) The h-index 1255

function hn,k(ẑ) for k0 ≤ k < n is strictly decreas- 1256

ing, convex, and satisfies limẑ→∞ hn,k(ẑ) = 0. 1257

This theorem establishes BEACON’s core stop- 1258

ping criterion—after normalizing the current best 1259

reward, we stop sampling when the cost-adjusted 1260

index threshold is reached. This occurs when the 1261

current best reward is sufficiently high relative to 1262

our uncertainty about the reward distribution, con- 1263

sidering the sampling cost. 1264

D.5 Computation of the h-index 1265

Computing the h-index function hn,k(ẑ) requires 1266

solving recursive equations based on the Bellman 1267

equation and expected marginal gain function Hn,k 1268

from §2.2. As derived in (Baucells and Zorc, 2024), 1269

we need to solve: 1270

Hn,k(ẑ, 0, 1; c) = Hk+1,k(ẑ, 0, 1; c) 1271

+

∫
σu · g(u) dF2α(u), (8) 1272

where

g(u) = max

{
0, Hn,k+1

(
zu − µu
σu

, 0, 1;
c

σu

)}
with boundary condition Hn,n = 0, where 1273

zu = max{ẑ, u}, µu = u/(ν0 + k + 1), σu = 1274

Λk+1

√
2α0 + k + u2, Λk+1 =

√
2α0+k

2α0+k+1 , and 1275

F2α is the CDF of the Student-t distribution with 1276

2α0 degrees of freedom. 1277

In our implementation, we pre-compute the 1278

h-index function hn,k(ẑ) for each time horizon 1279

n using Jeffreys’ non-informative prior (α0 = 1280

−0.5, ν0 = 0). We create a lookup table using 1281

a geometric grid of ẑk ∈ [−30, 30] with resolution 1282

G = 100 for all timesteps k ∈ [3, n], leveraging an 1283

optimized implementation5 with Numba for paral- 1284

lel processing. 1285

5https://github.com/MSORlearners/
h-index-computation.git
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During inference, BEACON evaluates the stop-1286

ping condition through constant-time linear inter-1287

polation on this pre-computed table, enabling effi-1288

cient decision-making during sequential sampling1289

without the computational overhead of dynamic1290

programming calculations at runtime.1291

D.6 Binary-Reward Variant: Bernoulli–Beta1292

Learning1293

Model. Consider the sequential generation pro-1294

cess in Section 2.2 with binary rewards ri ∈ {0, 1}1295

and unknown success probability θ ∈ (0, 1). Con-1296

ditional on θ, the draws are i.i.d. Bernoulli(θ).1297

Sampling incurs a per-draw cost c > 0 and the hori-1298

zon is at most n draws. Let rk = (r1, . . . , rk) and1299

zk = max{r1, . . . , rk} ∈ {0, 1} be the best ob-1300

served reward by stage k. Adopt the conjugate prior1301

θ ∼ Beta(a0, b0) with a0, b0 > 0. After k draws1302

with sk =
∑k

i=1 ri successes and fk = k − sk1303

failures, the posterior is1304

θ | rk ∼ Beta(ak, bk), ak = a0+sk, bk = b0+fk,1305

and the posterior-predictive probability of success1306

on the next draw is1307

qk = Pr(rk+1 = 1 | rk) = ak/(ak+bk).1308

The sufficient statistics are (zk, ak, bk). Upon ob-1309

serving rk+1,1310

zk+1 = max{zk, rk+1}, (9)1311

ak+1 = ak + rk+1, bk+1 = bk + 1− rk+1. (10)1312

Dynamic program. If zk = 1 the process is ab-1313

sorbing and the decision maker stops with value1314

1. When zk = 0, let Vn,k(0, ak, bk; c) denote the1315

optimal value (with at most n draws total, at stage1316

k). Then1317

Vn,k(0, ak, bk; c) = max{0, vk(c)}, (11)1318

Vn,n(0, an, bn; c) = 0, Vn,k(1, ak, bk; c) = 1,
(12)

1319

where vk(c) = qk + (1 − qk)Vn,k+1

(
0, ak, bk +1320

1; c
)
− c, and qk = ak/(ak+bk).1321

It is convenient to rewrite the recursion in1322

remaining-draws form. Let Rt(a, b; c) be the op-1323

timal value with t ∈ {0, 1, . . . } draws remaining1324

and no success yet. With R0(·) ≡ 0,1325

Rt(a, b; c) = max
{
0, q(a, b)+

(1− q(a, b))Rt−1(a, b+ 1; c)− c
}
,

(13)1326

where q(a, b) = a/(a+b). The connection to (11)1327

is Vn,k(0, ak, bk; c) = Rn−k(ak, bk; c).1328

Reservation cost and optimal policy. For each 1329

stage, there is a unique cost threshold at which the 1330

decision maker is indifferent between stopping and 1331

taking one more draw. 1332

Lemma 2 (Basic properties of Rt). For fixed 1333

(t, a, b) with t ≥ 1 and a, b > 0, the map c 7→ 1334

Rt(a, b; c) is continuous, nonincreasing, and 1- 1335

Lipschitz on [0,∞). Moreover Rt(a, b; 0) > 0 1336

and Rt(a, b; 1) = 0; hence {c > 0 : Rt(a, b; c) > 1337

0} ⊂ (0, 1). 1338

Proof: Induct on t. The base t = 0 is trivial 1339

since R0 ≡ 0. Suppose the claim holds for t − 1. 1340

The inner term 1341

ψt(c) := q(a, b)+(1−q(a, b))Rt−1(a, b+1; c)−c 1342

is continuous and 1-Lipschitz as a sum of a con- 1343

stant, a nonnegative multiple of a 1-Lipschitz func- 1344

tion, and −c. The outer map x 7→ max{0, x} 1345

is continuous and 1-Lipschitz, hence so is Rt = 1346

max{0, ψt}. Monotonicity in c follows from the 1347

−c term. For c = 0, Rt(a, b; 0) ≥ R1(a, b; 0) = 1348

q(a, b) > 0. For c = 1, since Rt−1(a, b+ 1; 1) ≤ 1349

Rt−1(a, b+1; 0) and q(a, b) ≤ 1, one has ψt(1) ≤ 1350

q(a, b)− 1 ≤ 0, hence Rt(a, b; 1) = 0. 1351

Lemma 3 (Strictly decreasing “continue” margin). 1352

Define ϕt(c) := q(a, b)+ (1− q(a, b))Rt−1(a, b+ 1353

1; c) − c. Then ϕt is continuous and strictly de- 1354

creasing on [0,∞), with ϕt(0) > 0 and ϕt(1) ≤ 0. 1355

Proof: Continuity follows from Lemma 2. If 1356

0 ≤ c0 < c1, then using that Rt−1 is nonincreasing 1357

and 1-Lipschitz, 1358

ϕt(c1)− ϕt(c0) = (1− q)
(
Rt−1(c1)−Rt−1(c0)

)
1359

− (c1 − c0) ≤ 0− (c1 − c0) < 0, 1360

so ϕt is strictly decreasing. The sign claims are 1361

from Lemma 2. 1362

Theorem 4 (Reservation–cost policy). Fix n 1363

and a stage k < n with posterior parameters 1364

(ak, bk). There exists a unique reservation cost 1365

hBn,k(ak, bk) ∈ [0, 1] such that 1366

Vn,k(0, ak, bk; c) > 0 ⇐⇒ c < hBn,k(ak, bk). 1367

Equivalently, hBn,k(ak, bk) is the unique solution c 1368

to 1369

c = ak
ak+bk

+ bk
ak+bk

Vn,k+1

(
0, ak, bk+1; c

)
. (14) 1370

The Bayes-optimal policy is: if zk = 1, stop and 1371

obtain 1; if zk = 0, continue iff c < hBn,k(ak, bk). 1372
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Proof: Work with Rt at t = n − k. By1373

Lemma 3, ϕt is strictly decreasing and continu-1374

ous with ϕt(0) > 0 and ϕt(1) ≤ 0, hence it1375

has a unique root ht(a, b) ∈ [0, 1]. From (13),1376

Rt = max{0, ϕt}, so Rt > 0 iff c < ht(a, b).1377

Continuity gives ϕt(ht) = 0, which is (14) after1378

mapping (t, a, b) back to (n, k, ak, bk). The stated1379

action rule is exactly the comparison between the1380

two branches in (11), while zk = 1 is absorbing1381

with value 1. Adaptation to1382

BEACON: For binary rewards, BEACON replaces1383

the continuous Normal framework with Bernoulli-1384

Beta conjugate learning. The stopping criterion1385

from Theorem 1 becomes the binary reservation1386

cost policy in Theorem 4, while the sufficient statis-1387

tics (5) are replaced with the simpler Beta updates1388

(9). This maintains BEACON’s sequential struc-1389

ture while using binary-specific optimal stopping1390

decisions.1391

D.7 Proof of Theorem 11392

Proof. Under the Normal reward model with1393

Normal–Inverse–Gamma prior, (zk, µk, σk) (to-1394

gether with k) are sufficient statistics for the state1395

(Lemma in Appendix D.3). Standardizing gives1396

ẑk = (zk − µk)/σk and reduces the problem to the1397

canonical (location–scale normalized) sequential1398

search instance.1399

By Theorem 2 (Universal Index Policy), for the1400

canonical problem there exists a strictly decreas-1401

ing index function hn,k(·) such that the (myopic)1402

continuation rule1403

Continue at step k ⇐⇒ hn,k(ẑk) >
c

σk
1404

maximizes the Bellman value function. Translating1405

back to original (unscaled) variables yields exactly1406

condition (3). Therefore the stopping time1407

K = min{k ≥ k0 : hn,k(ẑk) ≤ c/σk} ∧ n1408

achieves the optimal value E[zK −Kc].1409

Optimality of K follows because: (i) any earlier1410

stop with hn,k(ẑk) > c/σk forgoes strictly positive1411

expected marginal gain; (ii) any continuation with1412

hn,k(ẑk) ≤ c/σk incurs cost exceeding expected1413

benefit; (iii) strict monotonicity of hn,k implies1414

no alternative rule can dominate. Hence K is the1415

unique optimal stopping time under the stated as-1416

sumptions.1417

D.8 Sensitivity Analysis1418

Proposition 1. The optimal stopping timeK under1419

the policy is influenced by several factors: it de-1420

creases with higher sampling cost c and larger cur- 1421

rent best reward zk, while increasing with higher 1422

posterior mean µk and greater posterior scale pa- 1423

rameter σk. Additionally, the algorithm becomes 1424

more patient (tend to continue) when more remain- 1425

ing samples (n− k) are available. 1426

Proof of Proposition 1 Proof: From Theorem 1427

3, we know that the h-index function hn,k(ẑ) for 1428

k0 ≤ k < n is strictly decreasing, convex, and 1429

satisfies limẑ→∞ hn,k(ẑ) = 0. 1430

Under the UIP stopping criterion in Equation 1431

(3), stopping occurs when hn,k(ẑk) ≤ c
σk

. Since 1432

hn,k(ẑ) is strictly decreasing, higher c raises the 1433

threshold h−1
n,k(c/σk), leading to earlier stopping 1434

(smaller K). 1435

For a fixed standardized best reward ẑ, the h- 1436

index function hn,k(ẑ) is increasing in n− k (the 1437

number of remaining samples) as shown in Bau- 1438

cells and Zorc (2024). This means that when more 1439

samples remain available (larger n− k), the thresh- 1440

old for stopping becomes higher, making the algo- 1441

rithm more "patient" and likely to continue sam- 1442

pling. 1443

With ẑk = zk−µk
σk

, higher zk increases ẑk, which 1444

decreases hn,k(ẑk) due to the function’s monotonic- 1445

ity, resulting in earlier stopping. Conversely, higher 1446

µk decreases ẑk, thereby increasing hn,k(ẑk) and 1447

extending sampling (larger K). The scale parame- 1448

ter σk affects stopping through dual mechanisms: 1449

it decreases ẑk by appearing in the denominator 1450

and simultaneously decreases c
σk

. Both effects in- 1451

crease hn,k(ẑk) relative to c
σk

, encouraging contin- 1452

ued sampling (larger K). 1453

E Additional Experimental Results 1454

E.1 Statistical Significance Analysis of 1455

BEACON 1456

To assess the reliability of our results, we present 1457

a focused analysis using LLaMA-3.2-3B as our 1458

base model. Each experiment was conducted with 1459

5 different random seeds, and we report the error 1460

bars as the standard error of the mean (SEM). As 1461

shown in Table 6, BEACON achieves comparable 1462

performance to the BoN baseline in terms of ac- 1463

curacy (32.8±1.6% vs. 33.4±1.3% for reasoning 1464

tasks) and win rate (23.5±1.8% vs. 25.0±2.5% for 1465

alignment tasks), with overlapping error margins 1466

indicating no substantial performance degradation. 1467

However, BEACON requires significantly fewer 1468

samples (15.8±1.2 vs. 32.0 for reasoning tasks), 1469

resulting in substantially higher value scores that 1470
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Table 6: Comparison of BEACON with baseline methods using LLaMA-3.2-3B. Results shown as mean±SEM
across 5 random seeds.

Reasoning Tasks (Avg. MATH/AIME/AMC) Alignment Task (AlpacaEval 2.0)

Method Acc. ↑ Samples ↓ Reward ↑ Value ↑ Win ↑ Samples ↓ Reward ↑ Value ↑
(%) (K) (Scaled) (Scaled) (%) (K) (Scaled) (Scaled)

Direct CoT 20.0±2.8 1.0 −1.60±0.10 −0.40±0.05 16.0±3.5 1.0 0.20±0.05 −0.80±0.08
BoN (N-RM) 33.4±1.3 32.0 3.49±0.22 0.29±0.14 25.0±2.5 32.0 4.00±0.25 0.80±0.09
BEACON (N-RM) 32.8±1.6 15.8±1.2 3.25±0.18 1.12±0.21 23.5±1.8 14.5±2.3 3.65±0.22 1.20±0.20

account for both performance and computational1471

cost (1.12±0.21 vs. 0.29±0.14).1472

E.2 Impacts of Cost on the Value1473

Optimizations1474

The sampling cost, denoted by c, plays a criti-1475

cal role in the optimization of our value function,1476

which serves as the core objective for determining1477

the optimal stopping criterion. As illustrated in1478

Figure 3, variations in the cost parameter directly1479

influence the shape and peak of the value function1480

and the resulting optimal sample size. The left sub-1481

plot of Figure 3 shows that for any given sampling1482

cost, the value function initially increases with the1483

number of samples as the expected reward grows1484

when we have more sample option to select, but1485

eventually decreases as the cumulative cost out-1486

weighs the marginal gain from additional samples.1487

Notably, increasing the sampling cost leads to a1488

lower maximum achievable value and shifts the1489

point of optimal stopping (where the value function1490

peaks) towards a smaller number of samples. The1491

right subplot of Figure 3 further emphasizes this1492

relationship by directly plotting the optimal sample1493

size against the sampling cost. This plot clearly1494

demonstrates a strong inverse correlation: as the1495

cost of obtaining each sample increases, the BEA-1496

CON framework optimally decides to stop sam-1497

pling earlier, resulting in a significantly reduced1498

optimal sample size.1499

E.3 Normality Analysis of Reward1500

Distributions1501

While BEACON leverage learning for reward es-1502

timation, we acknowledge that real-world reward1503

distributions from LLMs may not always strictly1504

adhere to normality. This appendix section visually1505

explores the characteristics of reward distributions1506

observed in our experiments using the Nemotron1507

reward model, providing context for our robust up-1508

dating mechanism.1509

Figure 7 presents an aggregated view of reward 1510

distributions, conditioned on whether the generated 1511

responses were ultimately deemed correct or in- 1512

correct. We observe that for both categories, the 1513

empirical distributions of rewards are reasonably 1514

approximated by a normal distribution, albeit with 1515

different means and variances. Specifically, cor- 1516

rect answers tend to receive higher mean rewards, 1517

but both distributions exhibit a unimodal, bell-like 1518

shape characteristic of normality. This overall trend 1519

provides a foundational justification for employing 1520

a Gaussian-based learning model. 1521

Figure 7: Aggregated reward distributions from the
Nemotron RM, separated for responses classified as
correct (blue histogram, blue normal fit) and incorrect
(orange histogram, red normal fit). Both distributions
show approximate normality.

However, analyzing distributions at an aggre- 1522

gate level can mask variations in individual query- 1523

specific reward patterns. Therefore, Figure 8 dives 1524

into specific cases to illustrate the types of reward 1525

distributions encountered for individual prompts. 1526

The leftmost panel ("Normal Question 8") depicts 1527

a common scenario where the rewards for multiple 1528

samples from a single prompt follow an approx- 1529

imately normal distribution, though the specific 1530

mean and variance naturally differ from prompt 1531

to prompt. In contrast, the middle panel ("Non- 1532

Normal Question 3") illustrates an occasional but 1533

important pattern: the distribution consists primar- 1534

ily of high-reward samples with a few significantly 1535
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lower, noisy rewards in the left tail. This type1536

of skewed distribution, or one with outliers, can1537

badly influence standard posterior parameter up-1538

dates. But it is precisely these instances that mo-1539

tivate BEACON’s robust updating formula, which1540

is designed to mitigate the impact of such extreme1541

low-value outliers, thereby maintaining a more sta-1542

ble and reliable estimation of the reward potential1543

focused on the right tail. The rightmost panel ("All1544

Questions") shows the overall distribution of all1545

rewards for context.1546

Figure 8: Examples of query-specific reward distribu-
tions using the Nemotron RM. Left: A typical case ex-
hibiting approximate normality ("Normal Question 8").
Middle: An occasional case with predominantly high re-
wards and some low-value outliers ("Non-Normal Ques-
tion 3"), motivating robust updates. Right: Aggregate
distribution of all rewards.

These observations support our approach: while1547

normality is a useful working assumption for the1548

bulk of reward behaviors, the adaptive robust up-1549

date mechanism provides resilience against devia-1550

tions, particularly those caused by uninformative1551

low scores, ensuring BEACON remains effective1552

across diverse and sometimes non-ideal reward1553

landscapes.1554

E.4 Robust Updating Formula and Details1555

Robust Update Rule. To mitigate negative skew-1556

ness and extreme left-tail outliers, we modify the1557

standard posterior update by filtering rewards be-1558

low the 1% posterior-predictive quantile. Specifi-1559

cally,1560

zk+1 = max{zk, rk+1}, (15)1561

r̃k+1 =

{
µk, if rk+1 < q0.01,

rk+1, otherwise,
(16)1562

µk+1 = µk +
r̃k+1 − µk
ν0 + k + 1

, (17)1563

σk+1 =

√
1− 1

(ν0+k+1)2

2α0 + k + 1
1564

×
√
(2α0 + k)σ2k + (r̃k+1 − µk)2. (18)1565

Figure 9: Value Estimation for the robust parameter
update method (adaptive) vs. non-adaptive method. Our
design helps BEACON avoid violating assumptions and
stop closer to the optimum on average.

where q0.01 = F−1
2αk

(0.01 | µk, σk) is the 1% 1566

quantile of the posterior predictive distribution. 1567

Interpretation. This one-sided winsorization 1568

caps the influence of extreme left-tail samples at the 1569

posterior mean, reducing variance inflation while 1570

leaving the maximum statistic zk+1 intact unless 1571

a new best reward is observed. The adjustment 1572

preserves the right-tail fidelity of the reward distri- 1573

bution, which is essential for correctly identifying 1574

high-quality responses. 1575

Practical Notes. (i) The choice of threshold p is 1576

robust across [0.5%, 2%], with p = 1% as default. 1577

(ii) The update is O(1) per step; quantiles can be 1578

pre-tabulated for efficiency. (iii) For numerical sta- 1579

bility, enforce σk ≥ 10−6. (iv) Optionally, robust 1580

updates can be activated only when recent empiri- 1581

cal skewness is strongly negative (e.g., γ1 < −0.5). 1582

Results. 1583

E.5 Case Analysis: Solution Diversity and 1584

Failure Analysis 1585

The BEACON framework employs an adaptive 1586

stopping mechanism that dynamically adjusts the 1587

number of samples (K) based on the expected 1588

marginal gain from additional sampling, relative to 1589

the sampling cost c and posterior uncertainty about 1590

the reward distribution (σk). This mechanism in- 1591

herently influences the diversity of generated so- 1592

lution candidates, balancing exploration breadth 1593

with computational efficiency. The stopping deci- 1594

sion is driven by the consistency of reward model 1595

(RM) scores (reflected in σk), the quality of the 1596

current best response (zk relative to µk), and the 1597
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Table 7: Examples of BEACON Behavior and Sample Diversity

Scenario Type Example Prompt S1 (Out & zk) S2 (Out & zk) S3 (Out & zk) S4 (Out & zk) S5 (Out & zk) S6 (Out & zk) Stops
(K)

Diversity

Easy / High Re-
ward

What is 2 + 2? Equals 4.
(zk ≈ 0.95)

The sum is 4.
(zk ≈ 0.98)

2+2 is 4.
(zk ≈ 0.96)

Early
(K = 3)

Low

Hard / Low Re-
ward

Simple proof of Fer-
mat’s Last Theo-
rem. . .

[Failed Proof 1]
(zk ≈ −2.0)

[Failed Proof 2]
(zk ≈ −2.2)

[Failed Proof 3]
(zk ≈ −1.8)

Early
(K = 3)

Low

Moderately Hard /
Improving

Simplify
√
242 Incorrect:

2
√
60.5

(zk ≈ −1.5)

Error:
√
200 +√

42
(zk ≈ −1.2)

Correct: 11
√
2

(zk ≈ 0.95)
Correct: 11 ·

√
2

(zk ≈ 0.93)
Correct:√
121 · 2 =

11
√
2

(zk ≈ 0.96)

Moderate
(K = 5)

Medium

Very Hard / Incon-
sistent

How did US states
get their names?

Brief: “Native
words, kings.”
(zk ≈ 0.1)

Partial: “VA
from Virgin
Queen. . . ”
(zk ≈ 0.3)

Flawed: “All
named after
presidents.”
(zk ≈ −0.5)

Better: “Native
Am. lan-
guages. . . ”
(zk ≈ 0.8)

Comprehensive
(zk ≈ 0.95)

Late
(K ≥ 5)

High

High Patience /
Extended

Outline three ap-
proaches to climate
change.

Approach A
(brief)
(zk ≈ 0.6)

Approach B
(flawed)
(zk ≈ 0.5)

Approach A (de-
tailed)
(zk ≈ 0.85)

Approach B (de-
tailed)
(zk ≈ 0.88)

Approach C (de-
tailed)
(zk ≈ 0.90)

Approach D
(zk ≈ 0.92)

Late
(K ≥ 6)

High

Note: Si denotes Sample i. zk values are illustrative, based on Nemotron RM scores.

remaining sample budget (n− k), as governed by1598

the Universal Index Policy (UIP).1599

Table 7 illustrates BEACON’s behavior across1600

diverse scenarios, highlighting how these factors1601

affect stopping time and sample diversity. The1602

examples are drawn from empirical observations1603

on benchmarks like MATH500 and AlpacaEval 2.0,1604

with quantitative insights into failure modes.1605

• Easy Queries with Consistent High Re-1606

wards: For simple queries (e.g., Example 1:1607

“What is 2 + 2?”), initial samples {yk}k0k=11608

yield uniformly high RM scores (zk ≈ 0.95,1609

low σk). Low posterior variance indicates1610

that further sampling is unlikely to improve1611

the best response, leading BEACON to stop1612

early (K = 3). This results in low sample1613

diversity, as responses are similar and high-1614

quality. In our experiments, approximately1615

20% of MATH500 queries exhibited this be-1616

havior, stopping at K ≤ 3 with σk < 0.1.1617

• Hard Queries with Consistent Low Re-1618

wards: For extremely difficult queries (e.g.,1619

Example 2: “Simple proof of Fermat’s Last1620

Theorem. . . ”), samples consistently receive1621

low RM scores (zk ≈ −2.0, low σk). BEA-1622

CON terminates early (K = 3) due to low1623

expected marginal gain, yielding low diversity.1624

About 25% of AIME24 queries showed this1625

pattern, with early stopping when µk < −1.5.1626

A failure mode occurs if the RM underes-1627

timates a potentially correct response, lead-1628

ing to premature stopping (observed in 2% of1629

cases).1630

• Moderately Hard Queries with Improving 1631

Rewards: For queries of moderate difficulty 1632

(e.g., Example 3: “Simplify
√
242”), initial 1633

samples may be incorrect (zk ≈ −1.5), but 1634

subsequent samples improve (zk ≈ 0.95). 1635

BEACON continues sampling to reduce σk 1636

and confirm consistency, stopping at moder- 1637

ate K (e.g., K = 5). This produces medium 1638

diversity, with varied incorrect and correct 1639

responses. In MATH500, 40% of queries fol- 1640

lowed this pattern, with K = 4 − 6. A fail- 1641

ure mode arises if early incorrect samples in- 1642

flate σk, delaying stopping (observed in 5% 1643

of cases). 1644

• Very Hard or Ambiguous Queries with In- 1645

consistent Rewards: For complex or am- 1646

biguous queries (e.g., Example 4: “How did 1647

US states get their names?”), RM scores vary 1648

widely (zk from -0.5 to 0.95, high σk). High 1649

variance encourages extended sampling (K ≥ 1650

5, approaching n), maximizing the chance of 1651

finding a high-quality response. This results 1652

in high diversity, capturing varied response 1653

quality. In AMC23, 25% of queries exhib- 1654

ited this behavior. A failure mode occurs if 1655

σk remains high due to RM noise, leading to 1656

excessive sampling (observed in 3% of cases). 1657

• High-Patience Configurations: When con- 1658

figured with low c or high n (e.g., Example 5: 1659

“Outline three approaches to solving climate 1660

change”), BEACON extends sampling even 1661

after finding good responses (zk ≈ 0.85 − 1662

0.92). A lower c reduces the effective cost 1663

threshold (c/σk), encouraging exploration for 1664
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potentially better or more diverse solutions.1665

This leads to late stopping (K ≥ 6) and high1666

diversity. In experiments with c = 0.1, 50%1667

of queries extended to K ≥ 8, enhancing so-1668

lution variety. A failure mode is unnecessary1669

computation if high-quality responses are al-1670

ready sufficient (observed in 4% of cases).1671

To quantify failure modes, we analyzed 1001672

MATH500 queries and found that premature stop-1673

ping (due to RM miscalibration) occurred in 2–3%1674

of cases, while excessive sampling (due to persis-1675

tent high σk) occurred in 3–5% of cases. These are1676

mitigated by the robust updating formula, which1677

filters outliers to stabilize σk. BEACON thus dy-1678

namically adjusts exploration based on reward con-1679

sistency (σk), response quality (zk, µk), and budget1680

(n − k), aligning with the trade-offs specified by1681

c and n. This ensures efficient high-reward sam-1682

ple selection across query difficulties, with failure1683

modes addressed through robust design.1684

F Reproducibility Statement1685

To facilitate reproducibility of our work, we have1686

made significant efforts to document all implemen-1687

tation details and experimental procedures. The1688

complete source code for BEACON is available1689

through a repository referenced in anonymous1690

GitHub repository., including implementations of1691

all baseline methods, reward model integrations,1692

and evaluation protocols. Our theoretical contribu-1693

tions include complete proofs in Appendix D.7 and1694

detailed derivations of the Universal Index Policy1695

with explicit formulations for the h-index computa-1696

tion (Appendix D.5). All experimental configura-1697

tions are thoroughly documented in Appendix A.1,1698

specifying exact model versions, API endpoints,1699

hyperparameter settings, and evaluation protocols1700

for both reasoning and alignment benchmarks. We1701

provide comprehensive hyperparameter selection1702

guidelines (Appendix B). The paper includes ex-1703

plicit algorithmic descriptions (Algorithm 1), suffi-1704

cient statistics formulations (Appendix D.3), and1705

complete experimental results with statistical sig-1706

nificance analysis (Appendix E.1). All datasets1707

used are publicly available, and our evaluation pro-1708

cedures follow standard protocols from established1709

benchmarks (MATH, AIME, AMC, AlpacaEval1710

2.0). Additionally, we provide extensions to dis-1711

crete reward scenarios (Appendix D.6) and prac-1712

tical implementation guidance for batch-parallel1713

deployments to ensure broad applicability of our1714

framework. 1715
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